The Signal-To-Noise Ratio (SNR)
Posted: 04 Dec 2018, 16:23
Because of the quantum nature of light, the detection of a photon by a CCD is always a random process dominated by a relationship from the Poisson statistic: the Poissonian distribution (after the French mathematician Simèon Poisson, 1781-1840).
The Poisson distribution is most commonly used to model the number of random occurrences of some phenomenon in a specified unit of space or time: it is like a Gaussian distribution (bell shaped) with the width determined by the square root of the total number of counts. When we try to measure a Poissonian event such as a photon detection with a CCD camera, the counting noise associated is given by the square root of the signal; then the noise N associated at a signal S is √S and the Signal to Noise Ratio (or S/N or SNR) is:
This fundamental relation is the key to understanding how noise affect our observation: actually this relation shows the natural upper limit of the SNR. It makes no difference whether an object is bright or faint or whether we take long or short exposures with big or small telescopes: it all depends on how many photons (S) we are able to collect: the SNR will never been greater than √S .
Actually there are other sources of noise in a CCD image that keep the SNR of our object of interest lower than the theoretical limit of √S: here is a list of the most important of them:
• readout noise: is the number of electrons introduced per pixel into your final signal upon readout of the CCD device. Typical values in modern CCD are within the 10 electrons/pixel;
• dark count: is the number of thermal electrons generated per second per pixel at a specified temperature. Typical values are very few electrons or fraction of electrons with cooled CCD;
• background noise: this is not an instrumental noise but it is of great importance. Natural skyglow, moonlight and light pollution all contribute to the signal collected by the CCD but these are not increasing the signal of the object of our interest. Because this background is generated by photons and because all photons measurements have an inherent uncertainty, when we subtract an uncertain value to remove the unwanted signal we actually add more noise.
• processing noise: every time you make some basic image processing such as subtracting dark frames and flat fielding you are combining uncertain numbers with other uncertain numbers on a pixel-by-pixel basis. Since in general these are independent source of noise they add their own noise in quadrature. For example, if we have noise from three sources with values N1, N2 and N3, the total noise will be:
Let’s make an example with some real numbers to see, for example, how much the background noise could affect the overall noise of an image and degrade the quality of the image itself.
We suppose, for simplicity, that the seeing is good enough to make our source of interest (a star) falls completely within 1 pixel.
The total signal collected by the pixel is of 900 counts: 400 of them are from the sky background and 500 are from the star’s light. The star plus sky combination has a noise of √900 = 30 counts on that pixel and this gives a SNR of 900/30 = 30. But this is not the correct way to evaluate the SNR. The signal of our source it is indeed of 500 counts, then a better estimate of the SNR is 500/√900 = 16.7. Actually, the true SNR is even lower: since we have no way of knowing that the sky background is exactly of 400 counts (the sky background itself is affected by the photon noise!) we should add the noise contribution from the sky (√400=20) to that of the star plus sky background (√400+500 =30 ), then we have:
This means that we could measure the star’s brightness with a precision of ±1/13.8 or about ±7% .
The Poisson distribution is most commonly used to model the number of random occurrences of some phenomenon in a specified unit of space or time: it is like a Gaussian distribution (bell shaped) with the width determined by the square root of the total number of counts. When we try to measure a Poissonian event such as a photon detection with a CCD camera, the counting noise associated is given by the square root of the signal; then the noise N associated at a signal S is √S and the Signal to Noise Ratio (or S/N or SNR) is:
This fundamental relation is the key to understanding how noise affect our observation: actually this relation shows the natural upper limit of the SNR. It makes no difference whether an object is bright or faint or whether we take long or short exposures with big or small telescopes: it all depends on how many photons (S) we are able to collect: the SNR will never been greater than √S .
Actually there are other sources of noise in a CCD image that keep the SNR of our object of interest lower than the theoretical limit of √S: here is a list of the most important of them:
• readout noise: is the number of electrons introduced per pixel into your final signal upon readout of the CCD device. Typical values in modern CCD are within the 10 electrons/pixel;
• dark count: is the number of thermal electrons generated per second per pixel at a specified temperature. Typical values are very few electrons or fraction of electrons with cooled CCD;
• background noise: this is not an instrumental noise but it is of great importance. Natural skyglow, moonlight and light pollution all contribute to the signal collected by the CCD but these are not increasing the signal of the object of our interest. Because this background is generated by photons and because all photons measurements have an inherent uncertainty, when we subtract an uncertain value to remove the unwanted signal we actually add more noise.
• processing noise: every time you make some basic image processing such as subtracting dark frames and flat fielding you are combining uncertain numbers with other uncertain numbers on a pixel-by-pixel basis. Since in general these are independent source of noise they add their own noise in quadrature. For example, if we have noise from three sources with values N1, N2 and N3, the total noise will be:
Let’s make an example with some real numbers to see, for example, how much the background noise could affect the overall noise of an image and degrade the quality of the image itself.
We suppose, for simplicity, that the seeing is good enough to make our source of interest (a star) falls completely within 1 pixel.
The total signal collected by the pixel is of 900 counts: 400 of them are from the sky background and 500 are from the star’s light. The star plus sky combination has a noise of √900 = 30 counts on that pixel and this gives a SNR of 900/30 = 30. But this is not the correct way to evaluate the SNR. The signal of our source it is indeed of 500 counts, then a better estimate of the SNR is 500/√900 = 16.7. Actually, the true SNR is even lower: since we have no way of knowing that the sky background is exactly of 400 counts (the sky background itself is affected by the photon noise!) we should add the noise contribution from the sky (√400=20) to that of the star plus sky background (√400+500 =30 ), then we have:
This means that we could measure the star’s brightness with a precision of ±1/13.8 or about ±7% .